Cooperation between Level Set Techniques and Dense 3D Registration for the Segmentation of Brain Structures
نویسندگان
چکیده
This paper presents a cooperative strategy between volumetric registration and segmentation. The segmentation method is based on the level set formalism. Starting from an initial position, a closed 3D surface propagates towards the desired boundaries through the evolution of a 4-D implicit function. We show that the number of iterations required for convergence is significantly reduced by using a registration process to initialize the surface. Furthermore it makes the segmentation fully automatic. The registration is achieved through a robust multiresolution and multigrid minimization scheme appropriate to our problem. In addition, a bidirectional propagation force depending on local intensity values has been designed for the evolution of the surface. Finally, an adaptive iteration step is automatically computed at each iteration in order to improve the robustness and the efficiency of the algorithm. Results on volumetric brain MR images are presented and discussed.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملSegmentation of brain 3D MR images using level sets and dense registration
This paper presents a strategy for the segmentation of brain from volumetric MR images which integrates 3D segmentation and 3D registration processes. The segmentation process is based on the level set formalism. A closed 3D surface propagates towards the desired boundaries through the iterative evolution of a 4D implicit function. In this work, the propagation relies on a robust evolution mode...
متن کامل